Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 23(18)2022 Sep 11.
Article in English | MEDLINE | ID: mdl-36142444

ABSTRACT

Insect chemosensory systems, such as smell and taste, are mediated by chemosensory receptor and non-receptor protein families. In the last decade, many studies have focused on discovering these families in Tephritidae species of agricultural importance. However, to date, there is no information on the Mexican fruit fly Anastrepha ludens Loew, a priority pest of quarantine importance in Mexico and other countries. This work represents the first effort to identify, classify and characterize the six chemosensory gene families by analyzing two head transcriptomes of sexually immature and mature adults of A. ludens from laboratory-reared and wild populations, respectively. We identified 120 chemosensory genes encoding 31 Odorant-Binding Proteins (OBPs), 5 Chemosensory Proteins (CSPs), 2 Sensory Neuron Membrane Proteins (SNMPs), 42 Odorant Receptors (ORs), 17 Ionotropic Receptors (IRs), and 23 Gustatory Receptors (GRs). The 120 described chemosensory proteins of the Mexican fruit fly significantly contribute to the genetic databases of insects, particularly dipterans. Except for some OBPs, this work reports for the first time the repertoire of olfactory proteins for one species of the genus Anastrepha, which provides a further basis for studying the olfactory system in the family Tephritidae, one of the most important for its economic and social impact worldwide.


Subject(s)
Receptors, Odorant , Tephritidae , Animals , Gene Expression Profiling , Insect Proteins/genetics , Insect Proteins/metabolism , Receptors, Odorant/genetics , Receptors, Odorant/metabolism , Smell , Tephritidae/genetics , Tephritidae/metabolism , Transcriptome
2.
Dev Comp Immunol ; 133: 104424, 2022 08.
Article in English | MEDLINE | ID: mdl-35447160

ABSTRACT

Immunological priming in insects is defined as a previous contact with non-virulent pathogens, which induces protection after a second virulent infection. The mechanism of this process is not well understood. We have observed midgut DNA synthesis (endoreplication) in Plasmodium berghei exposure mosquitoes (primed) and after the immune challenge, which could be an essential component of the priming response in the mosquito. Endoreplication requires cell cycle components re-direction to make multiple DNA copies. Therefore, it is fundamental to understand the role of cell cycle components in priming. Here, we analyzed the expression of the cyclins A, B, E, and AurkA, and the endoreplication components NOTCH and HNT in the mosquito Anopheles albimanus; after priming with non-infective Plasmodium berghei and challenged with an infective P. berghei. The overexpression of cell cycle elements occurred seven days after priming with a quick reduction 24 h after the challenge. Hnt and NOTCH overexpression occurred 24 h after priming. Antimicrobial peptide cecropin is quickly overexpressed after 24 h in primed mosquitoes, then is downregulated at day seven and overexpressed again after parasite challenge. We also found that DNA synthesis occurs in cells with different nuclear sizes, suggesting a change in midgut epithelial dynamics after Plasmodium exposure. Inhibition of DNA synthesis via cisplatin revealed that DNA synthesis is required for priming to limit Plasmodium infection. Our results indicate the importance of cell cycle components on DNA synthesis and Notch pathway during priming response in An. albimanus mosquitoes.


Subject(s)
Anopheles , Animals , Digestive System , Epithelial Cells , Immunologic Memory , Plasmodium berghei
3.
Virology ; 570: 67-80, 2022 05.
Article in English | MEDLINE | ID: mdl-35390695

ABSTRACT

Septins are a family of GTP-binding proteins identified in insects and mammals. Septins are components of the cytoskeleton and participate in cytokinesis, chromosomal segregation, intracellular vesicular traffic, and response to pathogens. Human septin 6 was identified as necessary for hepatitis C virus replication. Information about host factors necessary for flavivirus replication in mosquitoes is scarce. Thus, the role of septins in the replicative cycle of dengue virus in Aedes spp. derived cells was investigated. Through bioinformatic analysis, sequences of septin-like proteins were identified. Infected mosquito cells showed increased expression of Sep2. Colocalization analysis, proximity ligation and immunoprecipitation assays indicated that Sep2 interacts with proteins E, NS3 and NS5, but not NS1. Immunoelectron microscopy evidenced the presence of AalSep2 in replicative complexes. Finally, silencing of Sep2 expression resulted in a significant decrease in virus progeny, indicating that Sep2 is a host factor participating in dengue virus replication in mosquito cells.


Subject(s)
Aedes , Dengue , Flavivirus , Virus Replication , Aedes/virology , Animals , Dengue/virology , Flavivirus/metabolism , Flavivirus/physiology , Humans , Mammals , Septins/genetics , Septins/metabolism
4.
BMC Dev Biol ; 21(1): 11, 2021 08 26.
Article in English | MEDLINE | ID: mdl-34445959

ABSTRACT

BACKGROUND: Flying is an essential function for mosquitoes, required for mating and, in the case of females, to get a blood meal and consequently function as a vector. Flight depends on the action of the indirect flight muscles (IFMs), which power the wings beat. No description of the development of IFMs in mosquitoes, including Aedes aegypti, is available. METHODS: A. aegypti thoraces of larvae 3 and larvae 4 (L3 and L4) instars were analyzed using histochemistry and bright field microscopy. IFM primordia from L3 and L4 and IFMs from pupal and adult stages were dissected and processed to detect F-actin labelling with phalloidin-rhodamine or TRITC, or to immunodetection of myosin and tubulin using specific antibodies, these samples were analyzed by confocal microscopy. Other samples were studied using transmission electron microscopy. RESULTS: At L3-L4, IFM primordia for dorsal-longitudinal muscles (DLM) and dorsal-ventral muscles (DVM) were identified in the expected locations in the thoracic region: three primordia per hemithorax corresponding to DLM with anterior to posterior orientation were present. Other three primordia per hemithorax, corresponding to DVM, had lateral position and dorsal to ventral orientation. During L3 to L4 myoblast fusion led to syncytial myotubes formation, followed by myotendon junctions (MTJ) creation, myofibrils assembly and sarcomere maturation. The formation of Z-discs and M-line during sarcomere maturation was observed in pupal stage and, the structure reached in teneral insects a classical myosin thick, and actin thin filaments arranged in a hexagonal lattice structure. CONCLUSIONS: A general description of A. aegypti IFM development is presented, from the myoblast fusion at L3 to form myotubes, to sarcomere maturation at adult stage. Several differences during IFM development were observed between A. aegypti (Nematoceran) and Drosophila melanogaster (Brachyceran) and, similitudes with Chironomus sp. were observed as this insect is a Nematoceran, which is taxonomically closer to A. aegypti and share the same number of larval stages.


Subject(s)
Aedes , Arboviruses , Animals , Drosophila melanogaster , Mosquito Vectors , Sarcomeres
5.
PLoS Negl Trop Dis ; 15(6): e0009509, 2021 06.
Article in English | MEDLINE | ID: mdl-34161336

ABSTRACT

Iron and copper chelation restricts Plasmodium growth in vitro and in mammalian hosts. The parasite alters metal homeostasis in red blood cells to its favor, for example metabolizing hemoglobin to hemozoin. Metal interactions with the mosquito have not, however, been studied. Here, we describe the metallomes of Anopheles albimanus and Aedes aegypti throughout their life cycle and following a blood meal. Consistent with previous reports, we found evidence of maternal iron deposition in embryos of Ae. aegypti, but less so in An. albimanus. Sodium, potassium, iron, and copper are present at higher concentrations during larval developmental stages. Two An. albimanus phenotypes that differ in their susceptibility to Plasmodium berghei infection were studied. The susceptible white stripe (ws) phenotype was named after a dorsal white stripe apparent during larval stages 3, 4, and pupae. During larval stage 3, ws larvae accumulate more iron and copper than the resistant brown stripe (bs) phenotype counterparts. A similar increase in copper and iron accumulation was also observed in the susceptible ws, but not in the resistant bs phenotype following P. berghei infection. Feeding ws mosquitoes with extracellular iron and copper chelators before and after receiving Plasmodium-infected blood protected from infection and simultaneously affected follicular development in the case of iron chelation. Unexpectedly, the application of the iron chelator to the bs strain reverted resistance to infection. Besides a drop in iron, iron-chelated bs mosquitoes experienced a concomitant loss of copper. Thus, the effect of metal chelation on P. berghei infectivity was strain-specific.


Subject(s)
Anopheles/metabolism , Anopheles/parasitology , Copper/metabolism , Iron/metabolism , Animals , Anopheles/growth & development , Blood/metabolism , Chelating Agents/pharmacology , Female , Host-Parasite Interactions , Malaria/physiopathology , Male , Phenanthrolines/pharmacology , Plasmodium berghei/physiology
6.
Diagnostics (Basel) ; 11(2)2021 Feb 17.
Article in English | MEDLINE | ID: mdl-33671384

ABSTRACT

Pituitary adenomas (PAs) can be unpredictable and aggressive tumors. No reliable markers of their biological behavior have been found. Here, a proteomic analysis was applied to identify proteins in the expression profile between invasive and non-invasive PAs to search for possible biomarkers. A histopathological and immunohistochemical (adenohypophyseal hormones, Ki-67, p53, CD34, VEGF, Flk1 antibodies) analysis was done; a proteomic map was evaluated in 64 out of 128 tumors. There were 107 (84%) invasive and 21 (16%) non-invasive PAs; 80.5% belonged to III and IV grades of the Hardy-Vezina classification. Invasive PAs (n = 56) showed 105 ± 43 spots; 86 ± 32 spots in non-invasive PAs (n = 8) were observed. The 13 most prominent spots were selected and 11 proteins related to neoplastic process in different types of tumors were identified. Hint1 (Histidine triad nucleotide-binding protein 1) high expression in invasive PA was found (11.8 ± 1.4, p = 0.005), especially at high index (>10; p = 0.0002). High Hint1 expression was found in invasive VEGF positive PA (13.8 ± 2.3, p = 0.005) and in Flk1 positive PA (14.04 ± 2.28, p = 0.006). Hint1 is related to human tumorigenesis by its interaction with signaling pathways and transcription factors. It could be related to invasive behavior in PAs. This is the first report on Hint expression in PAs. More analysis is needed to find out the possible role of Hint in these tumors.

7.
Dev Comp Immunol ; 112: 103753, 2020 11.
Article in English | MEDLINE | ID: mdl-32526289

ABSTRACT

In hematophagous insects, the midgut is a fundamental barrier against infections and limits the development and transmission of pathogens. However, in mosquitoes, cell differentiation, proliferation, and cell cycle process in the midgut have not been characterized. Here we provide evidence of how cell cycle progression occurs in the newly emerged Anopheles albimanus mosquito midgut and describing cyclins expression as mediators of the cell cycle. The cell cycle at different post-emergence times was evaluated in disaggregated cells from midgut tissue using flow cytometry. Also, cyclins A, B, and E were identified by bioinformatics tools. These cyclins were used to analyze cell cycle progression. Flow cytometry data and the expression-pattern of the cyclins by qRT-PCR supported a polyploidy process, besides mitosis marker was marginally detected and only in newly emerged mosquitoes. Our results suggest that DNA increment in midguts occurs by polyploidy during the first hours post-emergence.


Subject(s)
Anopheles/physiology , Cyclins/metabolism , Enterocytes/physiology , Insect Proteins/metabolism , Intestines/cytology , Animals , Cell Cycle , Cells, Cultured , Computational Biology , Cyclins/genetics , DNA Replication , Flow Cytometry , Gene Expression Regulation, Developmental , Insect Proteins/genetics , Life Cycle Stages , Phylogeny , Polyploidy
8.
Parasit Vectors ; 10(1): 362, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28764795

ABSTRACT

BACKGROUND: Better knowledge of the innate immune system of insects will improve our understanding of mosquitoes as potential vectors of diverse pathogens. The ubiquitously expressed 14-3-3 protein family is evolutionarily conserved from yeast to mammals, and at least two isoforms of 14-3-3, the ε and ζ, have been identified in insects. These proteins have been shown to participate in both humoral and cellular immune responses in Drosophila. As mosquitoes of the genus Aedes are the primary vectors for arboviruses, causing several diseases such as dengue fever, yellow fever, Zika and chikungunya fevers, cell lines derived from these mosquitoes, Aag-2 from Aedes aegypti and C6/36 HT from Aedes albopictus, are currently used to study the insect immune system. Here, we investigated the role of 14-3-3 proteins (ε and ζ isoform) in phagocytosis, the main cellular immune responses executed by the insects, using Aedes spp. cell lines. RESULTS: We evaluated the mRNA and protein expression of 14-3-3ε and 14-3-3ζ in C6/36 HT and Aag-2 cells, and demonstrated that both proteins were localised in the cytoplasm. Further, in C6/36 HT cells treated with a 14-3-3 specific inhibitor we observed a notable modification of cell morphology with filopodia-like structure caused through cytoskeleton reorganisation (co-localization of 14-3-3 proteins with F-actin), more importantly the decrease in Salmonella typhimurium, Staphylococcus aureus and E. coli phagocytosis and reduction in phagolysosome formation. Additionally, silencing of 14-3-3ε and 14-3-3ζ expression by mean of specific DsiRNA confirmed the decreased phagocytosis and phagolysosome formation of pHrodo labelled E. coli and S. aureus bacteria by Aag-2 cells. CONCLUSION: The 14-3-3ε and 14-3-3ζ proteins modulate cytoskeletal remodelling, and are essential for phagocytosis of Gram-positive and Gram-negative bacteria in Aedes spp. cell lines.


Subject(s)
14-3-3 Proteins/metabolism , Aedes/immunology , Immunity, Cellular , Insect Proteins/metabolism , Mosquito Vectors/immunology , Phagocytosis , 14-3-3 Proteins/deficiency , 14-3-3 Proteins/genetics , Actins/metabolism , Aedes/cytology , Animals , Cell Line , Cytoplasm/chemistry , Cytoskeleton/physiology , Escherichia coli/immunology , Gene Silencing , Insect Proteins/deficiency , Insect Proteins/genetics , Mosquito Vectors/cytology , Phagosomes/metabolism , Phagosomes/microbiology , Protein Isoforms/genetics , Protein Isoforms/immunology , Staphylococcus aureus/immunology
9.
PLoS One ; 12(6): e0176533, 2017.
Article in English | MEDLINE | ID: mdl-28604779

ABSTRACT

Ubiquitination tags proteins for different functions within the cell. One of the most abundant and studied ubiquitin modification is the Lys48 polyubiquitin chain that modifies proteins for their destruction by proteasome. In Plasmodium is proposed that post-translational regulation is fundamental for parasite development during its complex life-cycle; thus, the objective of this work was to analyze the ubiquitination during Plasmodium chabaudi intraerythrocytic stages. Ubiquitinated proteins were detected during intraerythrocytic stages of Plasmodium chabaudi by immunofluorescent microscopy, bidimensional electrophoresis (2-DE) combined with immunoblotting and mass spectrometry. All the studied stages presented protein ubiquitination and Lys48 polyubiquitination with more abundance during the schizont stage. Three ubiquitinated proteins were identified for rings, five for trophozoites and twenty for schizonts. Only proteins detected with a specific anti- Lys48 polyubiquitin antibody were selected for Mass Spectrometry analysis and two of these identified proteins were selected in order to detect the specific amino acid residues where ubiquitin is placed. Ubiquitinated proteins during the ring and trophozoite stages were related with the invasion process and in schizont proteins were related with nucleic acid metabolism, glycolysis and protein biosynthesis. Most of the ubiquitin detection was during the schizont stage and the Lys48 polyubiquitination during this stage was related to proteins that are expected to be abundant during the trophozoite stage. The evidence that these Lys48 polyubiquitinated proteins are tagged for destruction by the proteasome complex suggests that this type of post-translational modification is important in the regulation of protein abundance during the life-cycle and may also contribute to the parasite cell-cycle progression.


Subject(s)
Erythrocytes/parasitology , Life Cycle Stages , Lysine/metabolism , Malaria/veterinary , Plasmodium chabaudi/growth & development , Plasmodium chabaudi/metabolism , Rodent Diseases/parasitology , Ubiquitination , Alternative Splicing , Animals , Gene Expression Regulation , Mass Spectrometry , Plasmodium chabaudi/genetics , Ubiquitin/genetics , Ubiquitin/metabolism , Ubiquitination/genetics
10.
Arch Insect Biochem Physiol ; 93(3): 143-159, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27592842

ABSTRACT

The 14-3-3 proteins are evolutionarily conserved acidic proteins that form a family with several isoforms in many cell types of plants and animals. In invertebrates, including dipteran and lepidopteran insects, only two isoforms have been reported. 14-3-3 proteins are scaffold molecules that form homo- or heterodimeric complexes, acting as molecular adaptors mediating phosphorylation-dependent interactions with signaling molecules involved in immunity, cell differentiation, cell cycle, proliferation, apoptosis, and cancer. Here, we describe the presence of two isoforms of 14-3-3 in the mosquito Aedes aegypti, the main vector of dengue, yellow fever, chikungunya, and zika viruses. Both isoforms have the conserved characteristics of the family: two protein signatures (PS1 and PS2), an annexin domain, three serine residues, targets for phosphorylation (positions 58, 184, and 233), necessary for their function, and nine alpha helix-forming segments. By sequence alignment and phylogenetic analysis, we found that the molecules correspond to Ɛ and ζ isoforms (Aeae14-3-3ε and Aeae14-3-3ζ). The messengers and protein products were present in all stages of the mosquito life cycle and all the tissues analyzed, with a small predominance of Aeae14-3-3ζ except in the midgut and ovaries of adult females. The 14-3-3 proteins in female midgut epithelial cells were located in the cytoplasm. Our results may provide insights to further investigate the functions of these proteins in mosquitoes.


Subject(s)
14-3-3 Proteins/genetics , Aedes/genetics , Insect Proteins/genetics , Insect Vectors/genetics , 14-3-3 Proteins/chemistry , 14-3-3 Proteins/metabolism , Aedes/classification , Aedes/growth & development , Aedes/metabolism , Amino Acid Sequence , Animals , Female , Gene Expression Regulation, Developmental , Insect Proteins/chemistry , Insect Proteins/metabolism , Insect Vectors/metabolism , Larva/genetics , Larva/growth & development , Larva/metabolism , Male , Organ Specificity , Phylogeny , Polymerase Chain Reaction , Pupa/genetics , Pupa/growth & development , Pupa/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Alignment
11.
Exp Parasitol ; 156: 49-60, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26008612

ABSTRACT

Plasmodium gametogenesis within the mosquito midgut is a complex differentiation process involving signaling mediated by phosphorylation, which modulate metabolic routes and protein synthesis required to complete this development. However, the mechanisms leading to gametogenesis activation are poorly understood. We analyzed protein phosphorylation during Plasmodium berghei gametogenesis in vitro in serum-free medium using bidimensional electrophoresis (2-DE) combined with immunoblotting (IB) and antibodies specific to phosphorylated serine, threonine and tyrosine. Approximately 75 protein exhibited phosphorylation changes, of which 23 were identified by mass spectrometry. These included components of the cytoskeleton, heat shock proteins, and proteins involved in DNA synthesis and signaling pathways among others. Novel phosphorylation events support a role for these proteins during gametogenesis. The phosphorylation sites of six of the identified proteins, HSP70, WD40 repeat protein msi1, enolase, actin-1 and two isoforms of large subunit of ribonucleoside reductase were investigated using TiO2 phosphopeptides enrichment and tandem mass spectrometry. In addition, transient exposure to hydroxyurea, an inhibitor of ribonucleoside reductase, impaired male gametocytes exflagellation in a dose-dependent manner, and provides a resource for functional studies.


Subject(s)
Gametogenesis/physiology , Plasmodium berghei/physiology , Protozoan Proteins/metabolism , Animals , Dose-Response Relationship, Drug , Electrophoresis, Gel, Two-Dimensional , Gametogenesis/drug effects , Hydroxyurea/pharmacology , Male , Mice , Mice, Inbred BALB C , Phosphoproteins/isolation & purification , Phosphoproteins/metabolism , Phosphorylation , Tandem Mass Spectrometry , Titanium/pharmacology
12.
Biomed Res Int ; 2015: 504187, 2015.
Article in English | MEDLINE | ID: mdl-25874215

ABSTRACT

Dengue fever (DF) is the most prevalent arthropod-borne viral disease which affects humans. DF is caused by the four dengue virus (DENV) serotypes, which are transmitted to the host by the mosquito Aedes aegypti that has key roles in DENV infection, replication, and viral transmission (vector competence). Mosquito saliva also plays an important role during DENV transmission. In this study, we detected the presence of sialic acid (Sia) in Aedes aegypti tissues, which may have an important role during DENV-vector competence. We also identified genome sequences encoding enzymes involved in Sia pathways. The cDNA for Aedes aegypti CMP-Sia synthase (CSAS) was amplified, cloned, and functionally evaluated via the complementation of LEC29.Lec32 CSAS-deficient CHO cells. AedesCSAS-transfected LEC29.Lec32 cells were able to express Sia moieties on the cell surface. Sequences related to α-2,6-sialyltransferase were detected in the Aedes aegypti genome. Likewise, we identified Sia-α-2,6-DENV interactions in different mosquito tissues. In addition, we evaluated the possible role of sialylated molecules in a salivary gland extract during DENV internalization in mammalian cells. The knowledge of early DENV-host interactions could facilitate a better understanding of viral tropism and pathogenesis to allow the development of new strategies for controlling DENV transmission.


Subject(s)
Aedes/metabolism , Dengue Virus/physiology , Host-Pathogen Interactions/physiology , N-Acetylneuraminic Acid/biosynthesis , Aedes/genetics , Aedes/virology , Animals , CHO Cells , Cricetinae , Cricetulus , Insect Proteins/genetics , Insect Proteins/metabolism , N-Acetylneuraminic Acid/genetics , Saliva/enzymology , Saliva/virology , Sialyltransferases/genetics , Sialyltransferases/metabolism , beta-D-Galactoside alpha 2-6-Sialyltransferase
13.
J Proteomics ; 119: 45-60, 2015 Apr 24.
Article in English | MEDLINE | ID: mdl-25555378

ABSTRACT

The Receptor for Activated C Kinase 1 (RACK1), a scaffold protein member of the tryptophan-aspartate (WD) repeat family, folds in a seven-bladed ß-propeller structure that permits the association of proteins to form active complexes. Mosquitoes of the genus Aedes sp., are vectors of virus producing important diseases such as: dengue, chikungunya and yellow fever. Based on the highly conserved gene sequence of AeaeRACK1 of the mosquito Aedes aegypti we characterized the mRNA and protein of the homologous AealRACK1 from the Ae. albopictus-derived cell line C6/36 HT. Two protein species differing in MW/pI values were observed at 35kDa/8.0 and 36kDa/6.5. The behavior of AealRACK1 was studied inducing stress with serum deprivation and the glucocorticoid dexamethasone. Both stressors induced increase of the expression of AealRACK1 mRNA and proteins. In serum-deprived cells AealRACK1 protein was located cortically near the plasma membrane in contrast to dexamethasone-treated cells where the protein formed a dotted pattern in the cytoplasm. In addition, 33 protein partners were identified by immunoprecipitation and mass spectrometry. Most of the identified proteins were ribosomal, involved in signaling pathways and stress responses. Our results suggest that AealRACK1 in C6/36 HT cells respond to stress increasing its synthesis and producing phosphorylated activated form. BIOLOGICAL SIGNIFICANCE: Insect cells adapt to numerous environmental stressors, including chemicals and invasion of pathogenic microorganisms among others, coordinating cellular and organismal responses. Individual cells sense the environment using receptors that trigger signaling pathways that regulate expression of specific effector proteins and/or cellular responses as movement or secretion. In the coordination of responses to stress, scaffold proteins are pivotal molecules that recruit other proteins forming active complexes. The Receptor for Activated C Kinase 1 (RACK1) is the best studied member of the conserved tryptophan-aspartate (WD) repeat family. RACK1 folds in a seven-bladed ß-propeller structure and it could be activated during stress, participating in different signaling pathways. The presence and activities of RACK1 in mosquitoes had not been documented before, in this work the molecule is demonstrated in an Aedes albopictus-derived cell line and its reaction to stress is observed under the effect of serum deprivation and the presence of glucocorticoid analog dexamethasone, a chemical used to cause stress in vitro.


Subject(s)
Aedes/metabolism , Gene Expression Regulation , Insect Proteins/biosynthesis , Receptors, Cytoplasmic and Nuclear/biosynthesis , Signal Transduction , Animals , Cell Line
15.
Arch Insect Biochem Physiol ; 73(3): 176-92, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20151471

ABSTRACT

Using transmission electron microscopy, light microscopy (Giemsa May-Grumwald), and the Periodic Acid-Schif (PAS) and Sudan Black B staining techniques, hemocytes in the hemolymph of adult female Dactylopius coccus were characterized. The following, in order of abundance, were found: granulocytes, plasmatocytes, prohemocytes, and oenocytoids. Granulocytes varied in size with granulations in the cytoplasm, a large quantity of mitochondria, rugose endoplasmatic reticulum, ribosomes and vesicles, central or exocentric, spherical and occasionally lobulate nucleus. Plasmatocytes were polymorphic with irregularities in the plasma membrane; cytoplasm contained mitochondria, rugose endoplasmatic reticulum and vesicles, and exocentric, spherical, or irregular nucleus. In both types of hemocytes, scant polysaccharides and lipids were found. Prohemocytes were small and spherical with homogeneous cytoplasm and large exocentric nuclei. Oenocytoids were oval or irregular with dense homogeneous cytoplasm and elongated exocentric nuclei. The percentages of granulocytes on different days (d 1 and 10) during the life of the adult female were significantly different, as were those of plasmatocytes on d 30 and 50 and prohemocytes on d 1 and 50.


Subject(s)
Hemiptera/ultrastructure , Hemocytes/ultrastructure , Animals , Female , Granulocytes/ultrastructure , Hemiptera/cytology , Microscopy, Electron, Transmission
16.
Insect Biochem Mol Biol ; 39(5-6): 395-402, 2009.
Article in English | MEDLINE | ID: mdl-19366631

ABSTRACT

The scavenger receptor family comprises transmembrane proteins involved in the recognition of polyanionic ligands. Several studies have established that members of this family are involved both in immunity and in developmental processes. In Drosophila melanogaster, one of the best characterized scavenger receptors is Croquemort, which participates in the recognition of apoptotic cells in the embryo. Although comparative genomic studies have revealed the presence of four orthologs of this receptor in the malaria vector Anopheles gambiae, little is known about their function. We have investigated the expression pattern of the four Croquemort orthologs during the mosquito life cycle. Croquemort transcripts SCRBQ2 and SCRBQ4 are expressed at all the developmental stages, while expression of Croquemort transcripts SCRBQ1 and SCRBQ3 is more restricted. We have also investigated the expression of the four Croquemort orthologs in the different organs of the adult female. Croquemort transcript SCRBQ2 is highly expressed in the A. gambiae female midgut. SCRBQ2 midgut gene expression was up-regulated after a non-infected or a Plasmodium berghei-infected blood meal, compared to its expression in midguts of sugar-fed females. Interestingly, knockdown of SCRBQ2 expression by dsRNA injection resulted in a 62.5% inhibition of oocyst formation, suggesting that SCRBQ2 plays a role in Plasmodium-mosquito interactions.


Subject(s)
Anopheles/genetics , Gene Expression Profiling , Insect Proteins/genetics , Insect Vectors/genetics , Plasmodium berghei/physiology , Receptors, Scavenger/genetics , Amino Acid Sequence , Animals , Anopheles/growth & development , Anopheles/metabolism , Anopheles/parasitology , Digestive System/metabolism , Digestive System/parasitology , Female , Humans , Insect Proteins/chemistry , Insect Proteins/metabolism , Insect Vectors/growth & development , Insect Vectors/metabolism , Insect Vectors/parasitology , Malaria/parasitology , Molecular Sequence Data , Receptors, Scavenger/chemistry , Receptors, Scavenger/metabolism , Sequence Alignment
17.
Salud Publica Mex ; 51 Suppl 3: S424-38, 2009.
Article in Spanish | MEDLINE | ID: mdl-20464216

ABSTRACT

The detection of molecules of pathogens (antigens and genetic material) and host molecules in response to infections (antibodies) is the basic principle involved in molecular diagnostic tests. These tests have avoided the need to detect the attacking pathogen. New advances in molecular biology and the development of robotic technology and genomic and protein sequencing have allowed for the development of new high performance and highly specific tests. Genomics and proteomics contribute to the identification of biomarkers and biotechnology provides methods to produce high purity reagents. The identification of coding genes of specific antigens, their cloning and recombinant production, the production of monoclonal antibodies, their fragments and single chain antibodies enabled new, safer, high sensitivity and specificity immunological techniques to develop. New recognition molecules, including aptamers, will soon replace the need to produce antibodies by immunization. For the detection of genetic material, new methodological strategies based on hybridization and amplification (PCR, end point and real time) in multiplex and microarray formats have been developed, and for their detection new reporter molecules have been designed that enable their quantification. Although these methods require sophisticated instrumentation, they will soon be accessible for application in public health.


Subject(s)
Biotechnology , Communicable Diseases/diagnosis , Humans , Immunologic Tests , Molecular Diagnostic Techniques
18.
Salud pública Méx ; 51(supl.3): s424-s438, 2009. ilus, tab
Article in Spanish | LILACS | ID: lil-556049

ABSTRACT

La detección de moléculas de patógenos (antígenos y material genético) y moléculas de respuesta de los hospederos ante la infección (anticuerpos) es el principio básico de las pruebas diagnósticas moleculares. Estas pruebas han hecho innecesaria la detección directa del microorganismo patógeno agresor. Los nuevos avances en biología molecular y el desarrollo de tecnología robótica y secuenciación genómica y proteica han permitido el desarrollo de nuevas pruebas diagnósticas altamente específicas y de gran rendimiento. La genómica y proteómica contribuyen a la identificación de biomarcadores y la biotecnología aporta métodos para producir reactivos de alta pureza. La identificación de genes codificantes de antígenos específicos, su clonación y producción recombinante y la producción de anticuerpos monoclonales, fragmentos de éstos y anticuerpos de una sola cadena han hecho posible el desarrollo de nuevas técnicas inmunológicas más seguras y de sensibilidad y especificidad elevadas. Nuevas moléculas de reconocimiento, incluidos los aptámeros, podrán pronto superar la necesidad de producir anticuerpos mediante inmunización. Para la detección de material genético se han desarrollado nuevas medidas metodológicas basadas en la hibridación y amplificación (PCR, de punto final y en tiempo real) en formatos multiplex y en microarreglos y para su detección se han diseñado moléculas reporteras que permiten su cuantificación. Aunque estos métodos requieren instrumentación compleja, puede ya anticiparse que pronto serán accesibles para su aplicación en salud pública.


The detection of molecules of pathogens (antigens and genetic material) and host molecules in response to infections (antibodies) is the basic principle involved in molecular diagnostic tests. These tests have avoided the need to detect the attacking pathogen. New advances in molecular biology and the development of robotic technology and genomic and protein sequencing have allowed for the development of new high performance and highly specific tests. Genomics and proteomics contribute to the identification of biomarkers and biotechnology provides methods to produce high purity reagents. The identification of coding genes of specific antigens, their cloning and recombinant production, the production of monoclonal antibodies, their fragments and single chain antibodies enabled new, safer, high sensitivity and specificity immunological techniques to develop. New recognition molecules, including aptamers, will soon replace the need to produce antibodies by immunization. For the detection of genetic material, new methodological strategies based on hybridization and amplification (PCR, end point and real time) in multiplex and microarray formats have been developed, and for their detection new reporter molecules have been designed that enable their quantification. Although these methods require sophisticated instrumentation, they will soon be accessible for application in public health.


Subject(s)
Humans , Biotechnology , Communicable Diseases/diagnosis , Immunologic Tests , Molecular Diagnostic Techniques
19.
Arch Insect Biochem Physiol ; 54(1): 37-45, 2003 Sep.
Article in English | MEDLINE | ID: mdl-12942514

ABSTRACT

The activation of Dactylopius coccus (Costa) hemolymph with microbial polysaccharide molecules was studied. Hemolymph incubated in the presence of laminarin, zymosan, and N-acetyl glucosamine produced a dark fibrillar precipitated, and the red pigment (carminic acid) was consumed (measured spectrophotometrically at 495 nm). Lipopolysaccharide (LPS) did not induce any response. The reaction was inhibited with millimolar concentrations of serine and cysteine protease inhibitors, EGTA and phenyl thiourea. It was also diminished by prostaglandin synthesis inhibitors: dexamethasone, acetylsalicylic acid, and indomethacin. However, Mg2+ chelator EDTA did not inhibit hemolymph activation. Hemolymph proteins were depleted from soluble phase during treatment with laminarin, but a group of around 34 kDa remained unmodified. These results showed that D. coccus hemolymph is activated by microbial elicitors, its activation depends on eicosanoids, and suggest participation of a prophenoloxidase (PPO)-like activation system that could consume carminic acid. We are currently dissecting the molecular factors involved in D. coccus hemolymph activation to determine homologies and differences with other arthropods immune response pathways.


Subject(s)
Acetylglucosamine/pharmacology , Carmine/analogs & derivatives , Carmine/metabolism , Coloring Agents/metabolism , Insecta/metabolism , Polysaccharides, Bacterial/pharmacology , Zymosan/pharmacology , Animals , Anticoagulants/metabolism , Catechol Oxidase/antagonists & inhibitors , Catechol Oxidase/metabolism , Cyclooxygenase Inhibitors/pharmacology , Cysteine Proteinase Inhibitors/pharmacology , Electrophoresis, Polyacrylamide Gel , Enzyme Precursors/antagonists & inhibitors , Enzyme Precursors/metabolism , Glucans , Hemolymph/drug effects , Hemolymph/metabolism , Insect Proteins/metabolism , Insecta/enzymology , Polysaccharides/pharmacology , Serine Proteinase Inhibitors/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...